
Methods and Tools for Visualization of Graphs and
Graph Algorithms*

V.N. Kasyanov

Laboratory for Program Construction and Optimization
Institute of Informatics Systems

Novosibirsk, Russia
kvn@iis.nsk.su

Received: March 26, 2019. Revised: May 20, 2021. Accepted: October 23, 2021. Published: November 16, 2021.

Abstract—Graphs are the most common abstract structure
encountered in computer science and are widely used for
structural information visualization. In the paper, we
consider practical and general graph formalism of s o
called hierarchical graphs and present the Higres and
ALVIS systems aimed at supp orting of structural
information visualization on the base of hierarchical graph
models.

Keywords—hierarchical graph; graph alg orithm; graph
drawing; graph algorithm animatio n; information visualization;
visualization system

I. INTRODUCTION
Graphs are the m ost common abstract structure

encountered in computer science. Any system that consists of
discrete states (or sites) and connections between them can be
modeled by a grap h. Graphs and g raph algorithms are used
almost everywhere in computer science (see, for example, [13,
14]).

Graph models can be used in practice only along with
support tools that provide visualization, editing and processing
of graphs. For this reason m any graph visualization systems,
graph editors and libraries of graph algorithms have been
developed in recent years. Examples of t hese tools inc lude
VCG [19], daVinci [6], Graphlet [11], GLT&GET [18], yEd
[21] and aiSee [1].

In some application areas the organization of information is
too complex to be modeled by a classical graph. To represent a
hierarchical kind of diagramming objects, some more powerful
graph formalisms have been introduced, e.g. higraphs [8] and
compound digraphs [20]. The higraphs are an ext ension of
hypergraphs and can represent complex relations, using
multilevel "blobs" that can enclose or intersect each other. The
compound digraphs are an extension of directed graphs and
allow both inclusion relations and adjacency relations between
vertices, but they are less genera l then the higraph formalism.
One of the recent non-classical graph formalisms is the

* The work was partially supported by the Russian Foundation for Basic
Research (grant 12-07-0091) and the Dynasty Foundation (grant NG13-076).

clustered graphs [5]. A cl ustered graph consists of an
undirected graph and its recursive partitioning into subgraphs.
It is a relatively general graph formalism that can handle many
applications with hierarchical in formation, and is amenable to
graph drawing.

Hence, there is a need for tool s capable of visualization of
such structures. Although some general-purpose graph
visualization systems provide recursive folding of subgraphs,
this feature is used only to hide a p art of in formation and
cannot help us t o visualize hierarchically structural
information. Another weak point is that usual graph editors do
not have a support for attributed graphs. Though the GML file
format, used by Graphlet, can store an arbitrary number of
labels associated with graph elements, it is impossible to edit
and visualize these labels in the Graphlet graph e ditor. The
standard situation for graph editors is to have one text label for
each vertex and, optionally, for each edge.

Graph drawing is a useful way of representation of graph
models, and visualization of graphs is used in many
applications for the design and analysis of communication
networks, related documents, as well as static and dynamic
structures of programs [9]. However, systems of related
objects frequently are dynamic. For example, relations between
objects or properties of objects can b e changed. If
transformation processes can be formalized and presented in
the algorithmic form then it is useful to create a graphical
representation of transformations.

An algorithm anim ation visualizes the behavior of an
algorithm by producing an abstraction of both the data and the
operations of th e algorithm [17]. Initially it maps the current
state of the algorithm into an image, which then is animated
based on the operations between two succeeding states in the
algorithm execution. Animating an algorithm allows for better
understanding of t he inner workings of the algorithm,
furthermore it makes apparent its deficiencies and adva ntages
thus allowing for further optimization.

Methods and systems of graph algorithm animations allow
us to study graph algorithms and in particular the processes in
connected systems. Research in visualization of alg orithms is
mostly focused on the construction of examples of dy namic
visualization. Visualization of a graph is a graphic
representation of graph elements. Usually graph elements

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1278 78

match some shapes, which makes it possible to build a graph
image. For example, vertices are displayed in a form of
circles and, edges in a form of arc lines, broken lines or
smooth curves. Applications of graph algorithm visualization
can be divided into two types according to the method they
implement: interesting events and the data-driven method [3].
Methods of the first type are based on selection of events
that occur during execution of an algorithm, for example,
comparing the vertex attribute value or removing an edge.
Methods of this type create some visual effects for each
interesting event. Methods of the second type are based on
data changing. During an operation, the memory status is
changed, for example, the values of variables. Further these
changes are visualized in some understandable way. In the
simplest case such changes can be displayed in a form of a
table of variable values. This approach is used in debuggers
of integrated development environments.

The existing algorithm visualizers have sev eral
disadvantages. One of the major drawbacks is that if there is a
need to build visualization of an algorithm arbitrarily close to
the original algorithm, then it is necessary to build a new
visualizer. As a rule, visua lizers also do not show the
correspondence between the algorithm instructions and the
generated visual effects or do not allow reassignment of visual
effects to the corresponding events.

In the paper, we consider a practical and general graph
formalism called hierarchical graphs and graph models [12]. It
is suited for visual processing and can be used in many areas
where the strong structuring of information is needed [15, 16].
We present also the Higres and ALVIS systems that are aimed
at supporting of information visualization on the base
hierarchical graph modes. The Higres system is a visualization
tool and an e ditor for at tributed hierarchical graphs an d a
platform for execution and animation of graph algorithms [10].
The ALVIS system is intended for building of graph algorithm
visualizations with the help of a flexible system of visual
effects and using a vi sualized graph algorithm as an input
parameter.

II. HIERARCHICAL GRAPHS AND GRAPH MODELS

A. Hierarchical graphs
Let G be a graph of some type, e.g. G can be an undirected

graph, a digraph or a hy pergraph. A graph C is called a
fragment of G, denoted by C G, if C includes only elements
(vertices and edges) of G. A set o f fragments F is called a
hierarchy of nested fragments of the graph G, if GF and
C1C2, C2C1 or C1 C2= for any C1, C2 F.

A hierarchical graph H = (G,T) consists of a graph G and a
rooted tree T that represents an immediate inclusion relation
between fragments of a hierarchy F of nested fragments of G.
G is called the underlying graph of H. T is called the inclusion
tree of H.

A hierarchical graph H is called a connected one, if each
fragment of H is connected graph, and a simple one, if all
fragments of H are induced subgraphs of G.

It should be noted that any clustered graph H can be
considered as a simple hierarchical graph H=(G, T), such that
G is an undi rected graph a nd the leaves of T are exactly the
trivial subgraphs of G (See Fig. 1).

A drawing D of a hierarchical graph H = (G,T) is a
representation of H in the plane such that the following
properties hold (See Fig. 1).

 Each vertex of G is represented either by a point or by
a simple closed region. The region is defined by its
boundary - a simple closed curve in the plane.

 Each fragment of G is drawn as a simple closed region
which includes all vertices and subfragments of t he
fragment.

 Each edge of G is represented by a sim ple curve
between the drawings of its endpoints.

D is a structural drawing of H if all edges of any fragment
of H are located inside the region of the fragment.

Fig.1 gives an example of a no nstructural drawing of a
hierarchical graph. A hierarchical graph is called a planar one
if it has such a structural draw ing that the re are no cros sing
between distinct edges an d the boundaries of di stinct
fragments.

Fig. 1. A simple hierarchical graph H = (G,T) and its drawing D

B. Hierarchical graph models
Let V be a s et of objects called sim ple labels (e.g. V can

include some numbers, strings, terms and graphs). Let W be a
set of label types of graph elements and let a label set V(w)=
V1 V2 … Vs, where s1 and for any i, 1 i s, V i V, be
associated with each w W.

A labelled hierarchical graph is a trip le (H,M,L), where H
is a hierarchical graph, M is a type function which assigns to
each element (vertex, edge and fragment) h of H its typ e
M(h) W, and L is a label function, which assigns to each
element h of H its label L(h)V(M(h)).

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1278 79

The semantics of a hierarchical graph model is provided by
an equivalence relation which can be spe cified in different
ways, e.g. it can be defined via invariants (i.e. properties being
inherent in equivalent labelled graphs) or by means of so-called
equivalent transformations that preserve the invariants.

III. SYSTEM HIGRES

A. Graph models in Higres
A hierarchical graph supported by the Higres consists of

vertices, fragments and edge s which we call objects (See
Fig. 2). Vertices and e dges form an un derlying graph. This
graph can be directed or undirected. Multiple edges and loops
are also allowed.

The semantics of a hierarchical graph is represented in
Higres by means of object types and ext ernal modules (see
below). Each object in the graph belongs to an object type with
a defined set of labels. Each label has its data type, name and
several other parameters. A set of values is asso ciated with
each object according to the set of labels defined for the object
type to which this object belongs. These values, along with
partitioning of objects to types, represent the semantics of the
graph. New object types and labels can be created by the user.

Fig. 2. A hierarchical graph in the Higres system

B. Visualization
In the Higres system each fragment is represented by a

rectangle. All vertices of this fragment and all subfragments are
located inside this rectangle. Fragments, as well as vertices,
never overlap each other. Each fragment can be closed or open
(See Fig. 2). When a fragment is open, i ts content is visible;
when it is clo sed, it is d rawn as an empty rectangle with only
label text inside it. A sep arate window can be opened to
observe each fragment. Only content of this fragment is shown
in this window, though it is po ssible to see this content inside
windows of parent fragments if the fragment is open.

Most part of visual attributes of an object is defined by its
type. This means that semantically relative objects have similar
visual representation. The Higres system uses a flexi ble
technique to visualize object labels. The u ser specifies a text
template for each object type. Th is template is u sed to create
the label text of objects of the given type by inserting labels'
values of an object.

Other visualization features include the following:

 various shapes and styles for vertices;

 polyline and smooth curved edges;

 various styles for edge lines and arrows;

 the possibility to scale graph image to an arbitrary size;

 edge text movable along the edge line;

 colour selection for all graph components;

 external vertex text movable around the vertex;

 font selection for labels text;

 two graphical output formats;

 a number of options to control the graph visualization.

Now Higres uses three graph drawing algorithms for
automatic graph allocation. The fi rst one is a force m ethod,
which is very close to original algorithm from [4]. The second
one is our i mprovement of t he first. The third one al locates
rooted trees on layers.

C. The user interface
The comfortable and intuitive user interface was one of our

main objectives in developing Higres. The system's main
window contains a toolbar th at provides a quick access to
frequently used menu commands and object type selection for
creation of ne w objects. The st atus bar d isplays menu and
toolbar hints and other useful information on current edit
operation.

The system uses t wo basic modes: view and edi t. In the
view mode it is possible only to open/close fragments and
fragment windows, but the scrolling operations are ex tended
with mouse scrolling. In the edit mode the left mouse button is
used to select objects and the right mouse button displays the
popup menu, in which the user can choose the operation he/she
wants to perform. It is also possible to create new objects by
selecting commands in this menu. The left mouse button can be
also used t o move vertices, fragments, labels texts and edge
bends, and res ize vertices and fragments. All edit operations
are gathered in a single edit mode. To our opinion, it is more
useful approach (especially for inexpe rienced users) than
division into several modes. However, for adherents of the last
case we provide two additional modes. Their usage is optional
but in some cases they may be useful: the "creation" mode for
object creation and "labels" mode for labels editing.

Other interface features include the following:

 almost unlimited number of undo levels;

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1278 80

 optimized screen update;

 automatic elimination of objects overlapping;

 automatic vertex size adjusting;

 grid with several parameters;

 a number of options that configure the user interface;

 online help a vailable for each m enu, dialog box a nd
editor mode.

D. Algorithm animation
To run an algorithm in the Higres system, the user should

select an external module in the dialog box. The system starts
this module and opens the process window that is used to
control the algorithm execution. Higres provides the run-time
animation of algorithm s. It also cache s samples for the
repeated and backward animation. A set of param eters is
defined inside a module. These parameters can be c hanged by
the user at any execution step. The m odule can ask user to
input strings and numbers. It can al so send a ny textual
information to the protocol that is shown in the process
window.

A wide range of semantic and gra ph drawing algorithms
can be implemented as external modules. As examples now we
have modules that simulate finite automata, Petry nets and
imperative program schemes (See Fi g. 3). The a nimation
feature can b e used for al gorithm debugging, educational
purposes and exploration of iteration processes such as f orce
methods in graph drawing.

Fig. 3. Animation of simulation of imperative program scheme

A special C+ + API that can be used to create external
modules is provided. This API includes functions for graph
modification and f unctions that provide interaction with the
Higres system. It is unnecessary for programmer, who uses this
API, to know the details of the internal representation of graphs
and system/module communication interface. Hence, the
creation of new modules in the Higres system is a rather simple
work.

IV. SYSTEM ALVIS

A. Interactive visualization model
A new algorithm visualization model based on the

dynamic approach and hierarchical graph models has been
created. The main point of the suggested model is that the
given algorithm is formulated in some programming language
that allows us to use instructions operating with graphs and to
execute the program derived from the text of the algorithm
after a set of transformations. More details about the model
can be found in [7]. The result of the program execution is
information which is to be used in creation of the underlying
algorithm visualization. An example of such instruction can
be adding an edge or a change in the attributes of vertices.
The following example shows the breadth-first search
algorithm for any graph. In the given case, Get and Set
instructions are used for reading and changing the graph
element’s attribute values. These instructions have formats
Get(Vertex, AttributeName) and Set(Vertex, AttributeName,
A ttributeValue), respectively. To construct a visualization of
the breadth-first search algorithm, the state attribute is
appointed to each graph vertex. The value of the state
attribute ref ects whether the vertex was visited during graph
traversal.

VertexQueue.Enqueue(Graph.Vertices[0]);
while (VertexQueue.Count > 0)
{
Vertex v = VertexQueue.Dequeue();
Set(v, ”state”, ”visited”);
foreach(Edge e in v.InEdges)
{
Vertex t =e.PortFrom.Owner;
string c = Get(t, “state”);
if(c != ”visited”)
{
Set(t, ”state”, ”visited”);
VertexQueue.Enqueue(t);
}
}
foreach(Edge e in v.OutEdges)
{
Vertex t = e.PortTo.Owner;
string c = Get(t, “state”);
if(c != ”visited”)
{
Set(t, ”state”, ”visited”);
VertexQueue.Enqueue(t);
}
}
}
VertexQueue.Clear();

Each instruction of th e algorithm generates one or more
images of the current state of the graph model. The graph
model is an annotated hierarchical marked graph. It is useful to
highlight the current executing instruction in each image
because it allows a user to keep attention on valuable events

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1278 81

at this moment. To solve the problem of highlighting the
current executing instruction in the image, the following
approach is used. Each text line of an algorithm can be
interpreted as a function. Also, each text line has a numeric
index in all text lines. So that order value is added to
arguments of the function corresponding to the text line. This
additional parameter is the number of the current executing
algorithm instruction. After this transformation, the text of
the breadth- first search algorithm from the above example
looks like this:

VertexQueue.Enqueue(Graph.Vertices[0]);
while (WhileCondition(2,
VertexQueue.Count > 0))
{
Vertex v = VertexQueue.Dequeue(3);
Set(4, v.ID, “state”, “visited”);
foreach(Edge e in ForeachCollection(5, v.InEdges))
{
Vertex t = e.PortFrom.Owner;
string c = Get(7, t, ”state”);
if(If Condition(8, c != ”visited”))
{
Set(10, t, ”state”, ”visited”);
VertexQueue.Enqueue(11, t);
}
}
foreach(Edge e in ForeachCollection(13,
v.OutEdges))
{
Vertex t = e.PortTo.Owner;
string c = Get(16, t, ”state”);
if(If Condition(17, c != ”visited”))
{
Set(19, t, ”state”, ”visited”);
VertexQueue.Enqueue(20, t);
}
}
}
VertexQueue.Clear();

The above example shows changes in the attributes of
the graph elements, too. This is a typical situation for
algorithms implementing only traversal of a graph - a
method when all graph vertices are visited one by one. For
example, the Prüfer sequence of a given tree is generated by
iteratively removing vertices from the tree u ntil only two
vertices remain. To perform this operation, the
RemoveVertex() in struction should be used, which leads to
generation of a visual effect of the corresponding vertex
disappearing. Here is an example of the Prüfer encoding
algorithm, how it can be formulated as a parameter of the
graph algorithm visualization system:

Int i = 0;
List<Vertex> Leafs = new List<Vertex>();
int n = Graph.Vertices.Count;

while(i++ <= n-2)
{
Leafs.Clear();
foreach(Vertex v in Graph.Vertices)

if(v.OutEdges.Count == 0) Leafs.Add(v);
Vertex codeItem =
Leafs[0].InEdges[0].PortFrom.Owner;
Output.Add(codeItem);
RemoveVertex(Leafs[0]);
}

Each algorithm instruction generates some information
during execution of the transformed text of the original
algorithm. This information describes the number of the
current instruction, the name of an attribute of a graph
element, the previous value of the attribute, a new value of
the attribute and the identifier of the graph element. This
information allows us to get the full log of operations
executed over graph elements. This operation log contains
the detailed information on the state of the graph model
during the algorithm running. Further the log of operations,
the input graph and the original text of the algorithm can
be used to generate the algorithm visualization. Each
operation log entry corresponds to some graphical effect over
visual representation of graph elements. The simplest
example of the visual effect for the breadth-first search
algorithm is to change the color of the graph vertex
representation when a state attribute of the vertex has been
changed and to change the color of the text of the
corresponding instruction.

B. Algorithm visualization system
The ALVIS system for graph algorithm visualization on

the base of the described model has been constructed. It
implements visualization in two steps: first, the algorithm text
is transformed into a p rogram ready for execution; after that
the program is executed with the given graph as a parameter.
The result is a log of items, each of which contains
information about changes in the graph model state. Second,
the visualizer receives the input graph, the original algorithm
text, the log of execution and visual effects settings. As a
result, the visualization system works out a sequence of
images corresponding to the graph model of intermediate
states of the algorithm.

The ALVIS system includes two main components: an
algorithm execution module and a graph algorithm visualizer.
It i s assumed that data are passed between these and other
components of the syste m in a text form. It means tha t
components of the system can be implemented on different
platforms and with different tools.

The purpose of the algorithm execution module is to
generate the execution log. The algorithm running is separated
from its visualization. This allows us to perform the algorithm
once and after that the operation log can be used to visualize
and refine the visualization many times. This can be useful
when computationally-intensive algorithms are visualized. In
such cases the second cycle of execut ion of the algorithm is
complex.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1278 82

To provide correct work of the algorithm execution
module, it is necessary to meet a significant condition. Since
any existing compiler or interpreter can be used to create this
module, the algorithm must be formulated in the language
supported by the selected compiler or interpreter. Actually
this is not a restrictio n on the algorithm implementation
language since many programming languages allow graph
structures to be used in the p rogram source code. So, the
given algorithm text can be considered as a ready program
source code. Also this allows us to transmit the input graph in
this compiled program and to generate the log of operations.

Another significant restriction relates to the algorithmic
complexity. In this approach, it is reasonable to visualize only
efficient algorithms, because it will take much time to build
the operation log of execution of an efficient algorithm. We
can use a small input graph for this case. This assumption
allows us to construct visualization for a reasonable time.

The algorithm execution module takes the given
algorithm text in an appropriate programming language,
executes it and returns the log of operations generated during
the algorithm run on a particular graph. The log of executed
operations contains information about all changed attributes
of graph elements and about graph elements added or
removed during the execution. Further this information is used
to generate the algorithm visualization.

The second main component of the visualization system is
the visualizer itself. At its input, this component receives the
algorithm text, the graph, the log of operations and
additional graphical options. A log information item is added
by special instructions created at the stage of preparation of
the algorithm text. For example, these special instructions are
the functions: Set(), Get(), IfCondition(), WhileCondition()
and ForeachCollection(). Their first argument is the number
of the corresponding text line. IfCondition() and
WhileCondition() do not perform any changes in the graph
model state but at least allow us to make a visual selection
of the text line where it was inserted. ForeachCollection() is
to be used to generate information which allows highlighting
a set of vertices before they will be actually enumerated. To
add these functions into appropriate places of the original text
of the algorithm, it is sufficient to use a contextual
replacement. The purpose of the preparation stage is to
eliminate the need for declarative structures, which have no
relation to the actual nature of the algorithm.

A log item may also contain information about the value
of an attribute of a graph element. A graph element is a
vertex, an edge or a port. If there is a vertex with its
incident edge, then a port is a point where the edge enters
the vertex. When rendering, it can be useful that the points
are allocated for these additional objects. Ports simplify
calculation of coordinates of grap hical primitives which
represent the edge elements. Strictly mathematically, it is
possible to simulate a port with a labeled vertex. So the class
of graphs with ports is isomorphic to the class of all graphs.

An attribute of a vertex, an edge or a port can have a
string name and a string value. The log of operations stores the
previous value of the attribute for a particular graph element.
This information is also useful for building the visualization,

since it is possible to make a smooth visual effect from a
previous value of an attribute to its new value.

It is not obvious how to bind information from a log
item to the visual effect. In this case, a user needs to interfere
in order to set an explicit binding between the set of attributes
in the text of the algorithm and the desired visual effects.
For example, if the operation of a log item is about changing
the coordinates of the graph element reflected with the use of
the attribute “position”, then it is reasonable to bind the
attribute with the visual effect, which leads to a shift of the
graph element. Another user example is to bind all log items
to the effect of a color mark of a current graph element
under processing. It can be a current vertex visited in the
algorithm of depth-first search or in any other graph traversal.
In this aspect the suggested approach is close to the
interesting events approach, where an algorithm instruction is
an interesting event.

Fig. 4. Visualization of the depth-first search algorithm

Fig. 4 shows an example of visualization of the depth-first
search algorithm on the graph, which is actually a binary
tree graph. The figure is one of the screenshots taken during
the process of visualization of the depth-first search
algorithm. The left side of the figure displays the text of the
algorithm formulated in terms of graphs. The attribute of a
graph vertex state indicates the fact that the vertex has already
been visited during the process of the graph traversal. A line
of the algorithm text has one of the following states: dark
thin, light thin and thick. The first state means that the
instruction has been executed at least once. The second s tate
means that the current image and the last shown visual effect
is the result of this instruction. The last state means that the
instruction has not been executed yet. The right part of the
figure displays the graph model, which is a hierarchical
graph with attributes. Only if this attribute is set, the
corresponding attribute will be created during visualization.
In this example, the visited vertices get the state attribute
that changes the color of a vertex. Also, this attribute’s value
corresponds to the increase of line width showing the graph
vertex circle. Vertices shown in a thin line have not been
visited yet.

There are methods that improve understanding of a graph
algorithm visualization based on visual effects. If there is a
rendering context of a visual effect for a log item, then this
context can be used to improve understanding of the
algorithm. For example, a smooth visualization along the

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1278 83

edge connecting the previous and the current vertices can be
used for visualization of the depth-first search algorithm. In
this case, the con text of visualization for the current vertex
is the previous vertex. If the previous vertex is not incident
to the current one, then the following method can be used.
It is necessary to find the shortest path from the current vertex
to the previous one and, after that, to apply a smooth
visualization along the edges of this path. This method helps
us to improve understanding of visualization of the algorithm
because a user can track the path of the graph vertices
traversal. Fig. 4 shows how visualization is used with a
rendering context. In this example, vertex 13 has been visited
after vertex 14 and vertex 14 is the rendering context for
vertex 13. This means that, when vertex 13 is visited, all
edges from the shortest path between these two vertices will be
rendered ac- cording to the visual effect specified in the
settings. So, the thickened light line is used for drawing
edges which belong to the path from the current vertex to
the root of the tree graph. A thick dark line is used for
drawing edges which are incident to already visited vertices.

Displaying of additional data structures can also be used
to improve understanding of visualization of a graph
algorithm. For example, the depth-first search algorithm uses
a stack and the breadth-first search algorithm visualization
uses a queue. The content of a stack or a queue can be rep-
resented as a graph. Since the visualization system allows us
to use the hierarchical graphs, a stack graph or a queue
graph can be included into a graph model for a particular
visualization. So the working graph model consists of a graph
with two vertices. The first vertex contains a stack graph and
the second contains an input graph. Such graph model can be
visualized with the created module of the system of graph
algorithm visualization. The queue or stack size is changed
during execution of the given algorithm and the corresponding
vertices are added or removed from the stack graph.
Hierarchical graphs are helpful for this purpose. If there is no
stack or queue, then a tree of fragments only consists of one
fragment, the input graph. For a stack the graph model consists
of three fragments: a root and two children. The first child is
the input graph and the second is a graph representation of the
stack. So, if the given algorithm uses an input graph and N
additional structures, then the tree of fragments contains N+2
elements. It is a root element and its N+1 children, one of
which is the input graph and others are graph representations
of additional data structures.

V. CONCLUSION
In the paper, a practical and general graph formalism of

hierarchical graphs and graph models was consi dered. It is
suited for visual processing and can be used in many areas
where the visualization of structural information is needed.

The Higres system being a visualization tool and an edi tor
for attributed hierarchical graphs and a platform for execution
and animation of graph algorithms was presented. The ALVIS
system which builds the algorithm visualization with the
help of a flexible system of visual effects and using a

visualized graph algorithm as an input parameter was
described.

ACKNOWLEDGMENT
The author is th ankful to all co lleagues taking part in th e

projects described. The work was part ially supported by the
Russian Foundation for Basic Research (grant N 12-07-0091)
and the Dynasty Foundation (grant NG13-076).

REFERENCES
[1] aiSee http://www.absint.com/aisee/
[2] C. Demetrescu, I. Finocchi. “A gener al-purpose logic-based

visualization framework”, Proc. of the 7th I nternat. Conf. in Centr al
Europe on Co mputer Graphics, Visualization and Interactive Digital
Media (WSCG’99), Plzen, 1999, pp. 55–62.

[3] C. Demetrescu, I. Finocchi, J. T. Stasko. “Specifying Algorithm
Visualizations: Interesting Events or State Mapping?”, Lecture Notes in
Computer Science, Vol. 2269, 2002, pp.16–30.

[4] P. Eades, “A heuristic for graph drawing”, Congressus Numerantium,
Vol. 42, 1984, 149-160.

[5] Q.W. Feng, R.F. Cohen, P. Eades, “Planarity for clustered graphs”,
Lecture Notes in Computer Science, Vol. 979, 1995, pp. 213-226.

[6] M. Fröhlich, M. Werner, “Demonstration of t he interactive graph
visualization system daVinci”, Lecture Notes in Com puter Science,
Vol. 959, 1995, pp. 266-269.

[7] D.S. Gordeev.”Graph algorithm visualization: inter pretation of
algorithm as a pr ogram”, Informatics in Resear ch and E ducation,
Novosibirsk, IIS, 2012, pp.149-160. (in Russian).

[8] D. Harel, “On visual formalism, Comm”. ACM, Vol. 31, No. 5, 1988,
pp. 514-530.

[9] I. Herman, G. Melançon, M.S. Marshall, “Graph visualization and
navigation in inf ormation visualization: a surve y”, IEEE Trans. on
Visualization and Computer Graphics, Vol. 6, 2000, pp. 24-43.

[10] Higres http://pco.iis.nsk.su/higres
[11] M. Himsolt, “The Graphlet system (system demonstration)”, Lecture

Notes in Computer Science, Vol. 1190, 1997, pp. 233-240.
[12] V.N. Kasyanov. “Hierarchical graphs and gr aph models: problems of

visual processing”, Problems of informatics systems and programming,
Novosibirsk, IIS, 1999, pp. 7-32. (in Russian).

[13] V.N. Kasyanov, V.A. Evstigneev, Graph T heory for Programmers.
Algorithms for Processing T rees, Kluwer Academic Publishers, 2000.
432 p.

[14] V.N. Kasyanov, V.A. Evstigneev. Graphs in Pr ogramming: Processing,
Visualization and Application, St. Petersburg, BHV-Petersburg, 2003,
1104 p. (In Russian).

[15] V.N. Kasyanov, E.V. Kasyanova, Visualization of Graphs and Gr aph
Models, Siberian Scientific Publ., 2010, 123 p.(in Russian).

[16] V.N. Kasyanov, I.A. Lisitsyn. “Hierarchical graph models and vis ual
processing”, Proc.of Conference on Software: Theory and Practice. 16th
IFIP World Computer Congress 2000, Beijing, PH EI, 2000, pp. 179-
182.

[17] A. Kerren and J. Stasko. “Algorithm animation - introduction", Lecture
Notes in Computer Science, Vol. 2269, 2002, pp. 1-15.

[18] B. Madden, P. Madden, S. Powers, M. Himsolt, “Portable graph layout
and editing”, Lecture Notes in Computer Science, Vol. 1027, 1996, pp.
385-395.

[19] G. Sander, “Graph layout through the VCG tool”, Lectur e Notes in
Computer Science, Vol. 959, 1995, pp.194-205.

[20] K. Sugiyama, K. Misue, “Visualization o f structured digraphs”, IEEE
Trans. on Systems, Man and Cybernetics, Vol. 21, No. 4, 1999, pp. 876-
892.

[21] yEd http://www.yworks.com/en/
 Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2021.15.13 Volume 15, 2021

E-ISSN: 2074-1278 84

http://www.absint.com/aisee/
http://pco.iis.nsk.su/higres
http://www.yworks.com/en/

